Skip to main content

SF (HP-Prime)

·

hp-prime
hp-prime

Description #

Calculates the Superformula for any angle Φ from Φ = 0 degree to Φ = 359 degrees.

\begin{equation} r(\phi) = \frac{1}{ \sqrt[n₁]{ \left| \frac{ \cos \left(\frac{m \phi}{4} \right) }{a} \right|^{n₂} + \left| \frac{ \sin \left(\frac{m \phi}{4} \right) }{b} \right|^{n₃} } } \end{equation}

Variable Effect
m edges of shape
n₁ resizes the spikes of the shape
n₂ defines shape
n₃ defines shape
a resize cos aspect of shape
b resize sin aspect of shape
Φ angle from 0 … 360 (0 … 2π)
r resulting distance from orgin

Note: If A and B are different then the shape might not form a closed loop.

Sample input #

Circle #

Using these values the Superformula should give a multiple figure. The first one looking like a circle.

Sample output #

The program can be used in the polar plotter to get the following output.

Program #

The program file contains the one programs Superformula that looks like this:

#pragma mode( separator(.,;) integer(d64) )

///
//  Calculate the distance from the origin for a given angle θ. This function
//  can be used with Polar-App to draw the graph of the Superformula.
//
EXPORT Superformula(θ, M, N1, N2, N3, A, B)
BEGIN
  LOCAL θM     := M * θ / 4;
  LOCAL Retval := 1 / (N1 NTHROOT (
    ABS(COS(θM) / A ) ^ N2 +
    ABS(SIN(θM) / B ) ^ N3
  ));

  RETURN Retval;
END;
Download SF.prime